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Executive Summary

When examinees from two different subgroups have the same ability distribution (or are "matched" on
ability) but are not equally likely to answer a particular item correctly, the item is said to exhibit DIF
(differential item functioning; that is, the item functions differently in the two groups). When test data are
analyzed, a statistical measure of DIF is calculated for each item so that items with large values of DIF (i.e.,
items with a large difference in the probability of equal ability examinees in the two groups answering correctly)
can be investigated to determine if the item should be removed from the test and/or item pool (the group of
items from which new tests are assembled). The Mantel-Haenszel (MH) procedure, which is used at the Law
School Admission Council (LSAC), has become the most widely used procedure for measuring DIF and is
recognized as the testing industry standard. The behavior of the MH DIF parameter is well understood for items
on which no guessing occurs, but not for items where guessing does occur; often the case with multiple-choice
items.

This research report presents a general formulation of the MH DIF parameter that is equally appropriate for
items on which guessing occurs and for items on which no guessing occurs. The value for this parameter is
calculated for numerous realistic conditions to explore its behavior in situations where DIF might occur with
real data. Practitioners have assumed that the MH DIF parameter behaves similarly regardless of guessing
behavior, but our results indicate that guessing can affect the parameter's value for relatively difficult items. As
a result, the MH DIF statistic should be used with caution until the apparent deficiencies of this procedure are
better understood or corrected.

Before items are tested empirically for DIF at LSAC, and even before they are pretested (administered to
examinees for the first time), they are subjected to rigorous sensitivity reviews. Additionally, real data do not
mimic simulated data exactly. Thus, the implications of this study on the routine operational task of identifying
DIF at LSAC are still unknown, and may in fact be minimal. However, because some items on the Law School
Admission Test (LSAT) are known to exhibit guessing behavior, the results certainly suggest that additional
research is warranted.

Abstract

The Mantel-Haenszel (MH) differential item functioning (DIF) parameter for uniform DIF is well defined
when item responses follow the two-parameter-logistic (2PL) item response function (IRF), but not when they
follow the three-parameter-logistic (3PL) IRF, the model typically used with multiple-choice items. This
research report presents a general formulation of the MH DIF population parameter for any IRF and presents
results for numerous 3PL uniform DIF conditions. The results indicate that for items of medium or high
difficulty, the 2PL DIF parameter formulation can overestimate the 3PL DIF parameter and the MH DIF
estimator may exhibit less than expected power to identify even substantial DIF in certain situations.

Introduction

Differential item functioning (DIF) is said to occur in an item when examinees of equal proficiency (on the
construct measured by a test), but from separate populations, differ in their probability of answering the item
correctly. Although a large number of statistical procedures have been developed to detect DIF in test data, the
Mantel-Haenszel (MH) procedure (Holland & Thayer, 1988), used at the Law School Admission Council
(LSAC), has become the most widely used methodology and is recognized as the testing industry standard.
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The behavior of the MH DIF estimator, A , with respect to a number of factors, has been studied extensively in
simulation studies (see, for example, Allen & Donoghue, 1996; Donoghue, Holland, & Thayer, 1993; Roussos
& Stout, 1996; Shealy & Stout, 1993; and Uttaro & Millsap, 1994). However, it has not been determined how
well A estimates its corresponding population parameter, A, when a DIF item is modeled by a three-parameter-
logistic (3PL) function (Birnbaum, 1968). Although the behavior of A is well understood when responses
follow either a one- or two-parameter logistic funtion (1PL or 2PL, e.g., Donoghue et al., 1993), no general
formulation of A has been derived, although possible general formulas have been defined (e.g., Spray & Miller,
1992). This lack of knowledge about A in the case of 3PL items has limited the evaluation of the statistical bias
in A and has also hindered the understanding of the observed effects of simulation study factors on A . In

particular, Allen and Donoghue (1996); Donoghue, Holland, and Thayer (1993), and Uttaro and Millsap (1994)
all reported that the difficulty level of a 3PL DIF item can have a sizable effect on the magnitude of A , but
none of these studies could adequately explain the cause of this effect. Type I error studies by Allen and
Donoghue (1996) and Roussos and Stout (1996) have indicated that a statistical bias is sometimes present in A ,
and that this bias varies with the difficulty level of the 3PL item being tested for DIF. (Statistical bias can be
estimated in Type I error studies because the true amount of DIF is known to be zero.) Type I error bias alone,
however, does not fully explain the observed relationship between A and difficulty level in simulated 3PL DIF
items. The purpose of this research report is to present a formulation of the population DIF parameter for the
MH DIF estimator that is appropriate for any IRF model, including the 3PL model, and to describe through a
systematic set of calculations the behavior of this DIF parameter with respect to a number of examinee and item
factors. In particular, it will be shown that the unexplained behavior of A with respect to difficulty level
observed in past simulation studies can be explained, at least in part, by the behavior of the MH DIF population
parameter. Moreover, it will be shown that this behavior of A has important practical implications for the
detection of DIF in real data analyses.

Item Response Theory Terminology

Item response theory (IRT) describes the relationship between the ability or proficiency, 0, of examineeson a
construct and their probability, NO) , of a correct response on an item i that measures that construct. In this
research report, the following notations will be used:

i = item number,
j = examinee number,
n = number of items on test,
N = number of examinees,
Xy = random variable for the response of examinee j to item i (Xij =1 indicates a correct response

and Xij= 0 indicates an incorrect response), and
P(X y = 11 j) = j) = probability of a correct response on item i for an examinee j having ability
0j . The functional representation used for P(0j) is called the item response function (IRF).

Multiple-choice tests typically give an examinee four or five options from which to choose thecorrect
response to each item. For such items, empirical observation has shown that as examinee ability decreases, the
probability of a correct response does not decrease asymptotically to zero, but rather to a fairly substantial finite
value, usually between 0.10 and 0.25. It is generally believed that this non-zero lower asymptote of the IRF for
a multiple-choice item is due in part to examinees having a finite probability of guessing the correct answer to a
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multiple-choice item due to the item format. Because of this belief, the lower asymptote parameter of an IRF is
commonly referred to as the guessing (or pseudo-guessing) parameter. The most common parametric IRF that
is used to model and simulate examinee responses to multiple-choice items is the 3PL model of Birnbaum
(1968), which is given by

1 ci
P(Xy =110 j)=cr+

1+e
-1.7a;(0 -10

where
ai = the discrimination parameter for item i,
by = the difficulty level of item i, and
ci = the lower asymptote for item i.

(1)

When ci = 0, the IRF is referred to as the two-parameter logistic (2PL) IRF. When ci = 0 and ay= 1 (or is
constant across items), the IRF is referred to as the one-parameter logistic (1PL) IRF. The 1PL and 2PL models
are often inadequate for modeling responses to multiple-choice items, thus the 3PL model is commonly used.

DIF Terminology

As stated above, DIF is defined as occurring in an item when examinees of equal proficiency, but from
separate populations, differ in their probability of answering the item correctly. The item that is being tested for
DIF is commonly referred to as the studied item. The populations of interest for DIF analyses at LSAC are
based on ethnicity, gender, and geography (United States and Canada). The populations are categorized into a
reference group population (Caucasians, males, or U.S. citizens) and a set of focal group populations (various
minority groups, females, or Canadians). For didactic purposes we will limit our discussion to tests that are
intended to measure a unidimensional construct; the situation under which the MH statistic is intended to be
used. The proficiency of an examinee on the unidimensional construct will be referred to as 0.

Using the above DIF terminology, a studied item is said to display DIF when reference group examinees and
focal group examinees matched on 0 do not have the same probability of a correct response on the item. The
most common procedure used for modeling and simulating DIF in an item is to use a different 3PL IRF for the
reference group than for the focal group. The reference group IRF is denoted by PR(0) and the focal group IRF
by PF(0). When the only difference between the reference and focal group IRFs is in the difficulty parameter
(by) of the studied item, the resulting DIF is referred to as uniform DIF because such DIF is graphically
represented as a uniform horizontal shift in the IRF for one group relative to the other (see Figure 1). All other
forms of DIF are referred to as nonuniform DIF.



4

1.2

0.8 -F

g
:78
cu

8

0.6

0.4

0.2

0

Reference Group

Focal Group

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Theta

FIGURE 1. Three-parameter-logistic item response functions for an
item that exhibits uniform DIF against the focal group. For both
groups, a = 1 and c = .2. In the reference group, b = -.125, and in
the focal group, b = +.125.

Let DIF(0) be defined as the magnitude of DIF in a studied item at a particular value of 0. A variety of
formulations of DIF(0) exist in terms of PR(0) and P F(0). One common formulation parametrizes DIF(0) as the
ratio of the odds of a correct response on the studied item for the referencegroup, PR(0)/QR(0), to the odds of a
correct response in the focal group, PF(0)/QF(0). If there is no DIF in the studied item [i.e., ifPR(0) = PF(0)]
then the odds ratio, denoted by a(0), is equal to 1. In the case of uniform DIF within the framework of IRT,
when the studied item is 1PL or 2PL, a(0) can be shown through simple algebraic manipulation to be a constant
across 0 given by

a 0 = PR
(0) Q R (0) PR (0)Q F (0) e-1.7a0R-bF)()

P F (0) I Q F (0) P F (0)Q R (0)
(2)

where Q = 1 P and bR and bF are the difficulty parameters of the studied item for the reference and focal
groups, respectively. Thus, in[a(0)] is equal to -1.7a(bR-bF) when items follow the 1PL or 2PL model. Hence,
in the case of 1PL, the log-odds-ratio at any 0 is simply -1.7 times the difference in difficulty parameters for the
two groups. In the case of 3PL uniform DIF, the odds ratio is not a constant across 0 and is given by

[1+ ceL7a("R)
e1.7a(bRbF)a(0) =

--1.7a(0- Fb)1+ ce (3)

The behavior of the odds ratio, a(0), is important because, as will be discussed in more detail below, the MH
DIF statistic is based on the estimation of similar odds ratios. Thus, it will be helpful to refer back to the
previous equations when we review the MH DIF statistic and when we derive the equation for the MH
DIF parameter.
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The Mantel-Haenszel DIF Statistic

To evaluate whether a studied item displays DIF, examinees are first separated into reference and focal
groups (for example, males and females). Next the reference and focal groups are matched on ability, ideally 0.
Because 0 is an unobservable variable, DIF statistics must approximate matching on 0 with a matching based on
the observable data at hand. The MH DIF statistic matches examinees on the basis of total test score, including
the score on the studied item. Holland and Thayer (1988) have shown that when all items on a test follow the
1PL model (in which case the total test score is a sufficient statistic for 0) matching on total test score is the best
approximation to matching on 0. When all the items on the test follow the 2PL or 3PL models, matching on total
test score will be asymptotically equivalent to matching on 0 (Stout, 1990), which suggests that for sufficiently
long tests matching on total score will well approximate matching on 0. Simulation studies (such as Allen &
Donoghue, 1996; Donoghue, Holland, & Thayer, 1993; Roussos & Stout, 1996; Shealy & Stout, 1993; and
Uttaro & Millsap, 1994) have demonstrated the efficacy of matching on total score for 3PL items, although
significant breakdowns can sometimes occur when the number of items on the test is small (for example, 25
or fewer items) and the reference and focal groups display large mean score differences (for example, one
standard deviation).

After reference and focal group examinees are matched on total test score, a 2 x 2 x S contingency table is
formed, where S is the number of different values of total test score. At each score level s the data can be
arranged as a 2 x 2 table, as shown in Table 1.

TABLE 1
2 x 2 contingency table

Correct Incorrect Total
Reference group (R)
Focal group (F)
Total group

CRs
CFs
CTotal,s

IRs

IFs

ITotal,s

NRs
NFs
NTotal,s

CRs indicates the number of reference group examinees at score level s who answered the studied item
correctly. The other variables in Table 1 are analogously defined. If the item does not display DIF, the observed
odds of a correct response for the two groups in each 2 x 2 table should be approximately the same because
examinees in the two groups are roughly matched on ability. If the two groups do not have approximately the
same odds of a correct response, the item is said to be functioning differently in the two groups (i.e., displays
DIF). Thus the ratio of the reference group odds of a correct response on the studied item to the focal group
odds is one natural score-level DIF estimator that can be formed from the contingency table. This odds-ratio
estimator for score level s, as, is given by

C Rs I Fs
a Fs Ri

(4)

In the case of no DIF, as should be approximately one for all s because the true odds for the two groups,
when matched on ability, will be the same.

When as is assumed to be estimating a constant across s, an average value of as can be used as an overall
measure of the DIF in an item. The MH odds ratio (Mantel & Haenszel, 1959), a , is a weighted average of as
and is given by

9
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I RsC Fsjat

al ,ss Nib,a = (5)
iRscFs

s NTotal ,s

The MH odds ratio provides a weighted average] for giving stable estimation of a when as is estimating a
constant odds ratio across all score levels.

Holland and Thayer (1988) defined the MH DIF estimator (A) as

A = 2.35 ln(ei ). (6)

This transformation of a places A on the Educational Testing Services (ETS) "delta scale" in the case of
1PL. The delta scale is an inverse normal transformation of the percent correct to a linear scale with a mean of
13 and a standard deviation of 4 and is used as an index of item difficulty by ETS test development staff. The
A statistic is interpreted as a difference in the difficulty of items for the reference and focal groups on the delta
scale (Zieky, 1993).

The Mantel-Haenszel DIF Parameter

The goal of this section is to derive an expression for a theoretical MH DIF parameter, A, that represents the
...

expected value for A that would be obtained for a studied item if examinees could be matched on 9 exactly.
The examinees' 9's will be assumed to be sampled from an infinitely large population with continuous 0 density
functions for the reference and focal group populations and with a fixed ratio of reference group population size
to focal group population size. Such assumptions are typical of DIF simulation studies.

The general approach taken in this derivation is to assume that examinees are matched on a carefully chosen
theoretical matching test, then to carefully let test length go to infinity to result in the desired matching of
examinees on O. The derivation begins by assuming examinees are matched based on their scores on a
theoretical matching test (rather than a real or simulated one) that sorts examinees by test scores exactly (i.e.,
with no error). Assuming a matching test that has perfect reliability allows the convenience of not including the
score on the studied item in the matching criterion. The derivation could just as well be carried out with the
score on the studied item included in the matching criterion and would, in the end, result in the same formula for
the MH DIF parameter. However, the derivation is less cumbersome when the score on the studied item is not
included in the matching criterion.

Consider a matching test consisting of S Guttman items (Guttman, 1944) that span the ability range from
--457 to V7S' at equal intervals for both the reference and focal groups. Let the difficulty parameters of these
items be denoted by 13i and assume that they are on the same scale as the 9's. The ordered difficulty parameters
will be denoted by 13(i), where 13(i +1) f3(i) = 8 for all i = 1 to S. Because the items are equally spaced over the

I Et s will be difficult to estimate when either /Rs is close to 0 or CFs is close to 0. In such cases, ets will be very unstable and cause
large variability in the estimation of et . Thus when estimating a constant odds ratio, it makes sense to use an estimator that gives

proportionally less weight to score cells according to how close the cell is to having /Rs = 0 or CFs = 0. By using weights proportional to

/RsCFs, the Mantel-Haenszel odds ratio accomplishes this objective. Thus the weights in Equation 5 will be small for cells where ets

will be unstable.
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above stated ability range, we obtain 5 = 211§/S=2/j. If an examinee obtains a score of s, this indicates that
the examinee's 0 was at least (3(s), but less than 13(s) + 8. Thus, the probability of an examinee with ability 0
obtaining a score of exactly s, denoted by P(s10), is then given by

P(s10) =1 if 13(5) < 0 < f3(0+ 8, and (7)

P(s10) = 0 otherwise.

Now consider a specific cell C Rs in the 2 x 2 x S contingency table (see Table 1). The theoretical probability

of a particular examinee from the reference group, with ability 0, contributing to this cell is given by

P(s 10)PR (3), (8)

where PR(0) is the reference group IRF for the studied item, as defined previously, which is not assumed to take
any particular functional form for either the reference group or focal group. By assuming that the reference
group 0's follow some underlying distribution fR(0), we can then determine the expected total cell count for CRS,
for a sample of NR reference group examinees from the following integral:

C Rd= N R1P(S 10)PR (0)fR (0)d0 . (9)

Similar equations can be developed for all the other cells in the 2 x 2 x S contingency table. Because the only
0's that contribute to C Rs are between 13(s) and 13(s) + 8, and because P(s10) is unity in this range of 0's, Equation
9 can be written as

13(s)+6

E[C Rs] = NR SPR(0).1.R(0)d8 .

Ns)

(10)

This expression may be simplified by invoking the mean-value theorem to replace the integral with
a product. According to the mean-value theorem, there exists some value 0'cRs in the interval

P(s) < 0 CRs < I3(s) 8 that, when evaluated in the integrand expression [PR(0)fR(0), in this case], then
multiplied by the width of the interval (8, in this case), will result in the same value as the original integral.
Thus, by applying the mean-value theorem to Equation 10, E[CRS] can be written as

E[CRS] = NR PR (01c )fR (O'cR, ) 8 , (11)

for some (3(s) < ()'C& < P(s) + 5.

Similar expressions can be derived for E[CFs], E[IRs], and E[/Fs], with corresponding ability mean values''/F, . The expression for 1, which is required for the MH weights, is given bye'CFs 0/Rs , and 0 E[N Tora.s
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E[Nroid,s] = Nmud {YF[PF(O'c,s )1F (O'cps ) + QF (eiFs )fF(014.5

+ Y R [ P R (Vcx, (O'ck, )+ QR (0I/R, )fR (V/R, )1 go

where NTotal' NR + NF, the total number of examinees,

yF is the proportion of the total number of examinees who are in the focal group, and
yR is the proportion in the reference group.

An equation for a, which is analogous to the equation of & (Equation 5), can then be specified by
substituting in these expected values and simplifying, giving

(12)

QR(O'bis )fOrikr )PF(01CF, )fF(eICF., )8 a(s)
YF[PF(e' VFW CF,)+QF(e' I I R[PROI C. VR(Cr C )± QR(e'I IFc)fF(3' Fs.)1±Y R,VR(Y Rs)]Rs Rsa= (13)

QR0e/Rs)fR(Y its. )13F(etC VFO' C Fs )8

S F[i Fkvi CFs J. I C 1+ VF I J. I Flu' I LI+ iRL1 RluICRs R kuICRs ± VRW'/Rs lu'iRs ).1)

where

PR (e'c )QF (WI )' (14)a(s) =
PF(0' CF,)QR(0' I,,,)

Finally, we let test length, S, become asymptotically large while maintaining the equally spaced Guttman
items and the difficulty parameter range of J to -NFS' . Hence, the 0 range approaches 00 to +00, the width
of the intervals (5) approaches 0, and O'cRs , 8 r

F S 9 0 /RS , and O'/Fs all approach the same value, say Os. Because
score s approaches a continuous variable, Os may be replaced with 0, and the summations over the 5 intervals in
Equation 13 can then be replaced by integrals over dO. Because all the different 0' values for the same score s
approach a common value, the denominator of the MH weights simplifies to yFfF(0)+ yRfR (0). Thus, our final
formula for a [which applies weights to a(0) in an analogous manner as the MH odds ratio applies weights to
as ] is given by

co

fQR(°)PF(0) (e) a(0)de
YFJF Y R ROD

R(°)P F 4.fRffF (C4) dO
J

co YFJF iRfR

(15)

This formula is the same as the one postulated by Spray and Miller (1992).

Note that a(0) reduces to Equation 2 in the case of 1PL and 2PL, and it reduces to Equation 3 in the case of
3PL. This quantity is substituted into the final formula for the MH DIF parameter,

12
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A = 2.35 ln(a). (16)

Although no closed-form solution exists for the general solution of the integral for a (Equation 15),

numerical integration can be used to compute a. We developed software for the computation of A, via a using
Equation 15, by employing a standard technique, Simpson's 1/3 Rule [see, for example, Gerald, 1970] and
using 199 integration points across a 0 range from 6 to 6. This software for calculating the MH DIF population
parameter is available upon request from the authors.

Recall that when the IRF of the studied item follows either the 2PL or 1PL model and DIF is uniform, a(0) is
a constant with respect to 0, as given in Equation 2, and comes outside the integral in the numerator in Equation
-15. The integrals in the numerator and denominator then cancel each other out, which results in

and, consequently,

a = e-1.7a(bR-bF)

A = 2.35/n(e-17a(bR-b0), 2.35(-1.7a(bR bF))= 4a(bR bF)

(17)

(18)

which is the well-known form for A in the 1PL and 2PL cases (e.g., Donoghue, Holland, & Thayer, 1993). The
estimate of A is interpreted as an estimate of the difference in difficulty level for the reference and focal groups
on the studied item as measured on the ETS delta scale (Zieky, 1993). In the case of 1PL, this interpretation of
A is justified because A is 4(bR bF), a difference in b's multiplied by the appropriate constant. The
interpretation of A in the 2PL case is less direct because of the a parameter in the 4a(bR bF) formula.

In the 3PL case, the odds ratio parameter a(0) is not constant across 0 [see Equation 3], thus the simple
4a(bR bF) rule does not apply. In this case, because a(0) is not constant across 0; and because A does not have
a simple form, it is not clear what the interpretation of A should be.

Because A has become the industry standard (and the most widely used) DIF estimator, and it is used with
data that is modeled well by the 3PL IRF, it is important to know whether the interpretation of A as an
estimator of difference in difficulty level holds approximately true when the studied item is modeled with 3PL
uniform DIF.

Computation of A Under Realistic Conditions

Our formulation of the MH DIF parameter was calculated for numerous uniform DIF conditions. The 0's for
the reference group were always specified as following a standard normal distribution. The 0's for the focal
group were specified as following a normal distribution with unit variance; the mean was set at 1, .5, 0, .5, or
1 (five levels). The ratio of the reference group size to the focal group size (Ratio) was 5, 4, 3, 2, or 1 (five
levels). The discrimination parameter (a) was set at .5, .7, .9, 1.1, or 1.3 (five levels). The lower asymptote (c)
was set at 0 (the 2PL case), .1, .2, or .3 (four levels). The difficulty parameter for the reference group(bR) was
set at 2, 1.5, 1, .5, 0, .5, 1, 1.5, or 2 (nine levels). The difficulty parameter for the focal group (bF) was set
equal to bR (i.e., no DIF) and to bR ± .1, .2, ..., 1.5 (31 levels). (That is, the difference in b values for the two
groups was 0, ± .1, ± .2, ..., ± 1.5.) The item parameter factors were fully crossed, resulting in 5 x 4 x 9 x 31 =

5,580 "items" for which A was calculated (levels ofa by c by bR by bF) for the 5 x 5 = 25 examinee
combinations (focal group mean by ratio of reference to focal group size). A representative subset of the results
will be presented.
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ETS has developed a classification scheme to flag items with DIF (see Zieky, 1993), which is also used at
LSAC. Items where I A is at least 1.5 and significantly greater than 1.0 are classified as "C" items, or moderate
to large DIF. Items with a flag of C are routinely excluded from test assembly at LSAC. Items where IA I is not
significantly greater than 0.0 or IA I is less than 1.0 are classified as "A" items, or negligible DIF. All other
items are classified as "B" items, or slight to moderate DIF. Note that in the 1PL case, according to the equation
A= 4(bR -bF), a difference in b values of .375 or more would result in IAI values corresponding to a C flag
( A 1.5). Thus 24 of the 31 differences in b values used in the present study represent substantial DIF levels
(bR- bF =± .4, ± .5, ± 1.5). (Statistical significance is not relevant here because we are calculating the
parameter itself, not a statistic.)

The panels in Figure 2 show how c affects A at the various values of bR and bF. For all items Ratio = 5,
a = 0.9 and focal group mean = -1.0. The values of bF are plotted along the horizontal axis, and A is plotted
along the vertical axis. The values of bR are indicated by the different symbols. For instance, all solid circles
represent bR = 2.0, and the position of a particular solid circle in reference to the horizontal axis indicates the
value of bp-. When there is no difference in difficulty for the two groups (bR = bp-) for all levels of bR, A = 0 (no
DIF), as expected. The horizontal lines in the figure at A values of ± 1.5 and ± 1.0 delineate the A cutoff values
for C and B DIF items, respectively.
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FIGURE 2. Variation of A with bR (b value of reference group, indicated by the symbol), bF (b value of
focal group, indicated along the horizontal axis), and c (which varies across panels) for fixed values
of a = .9. Ratio = 5, and focal group mean = -1.0.
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For c = 0 (the 2PL case, shown in panel A of Figure 2), we find, as expected, that A = 4a(bR bF) . In the
1PL case (a = 1 and c = 0), bR bF = 0.4 would result in a C level value of A. However, for the items in panel
A of Figure 2, (a = .9), it is clear that when a x 1, A is not merely a transformation of bR bF on to the ETS
delta scale as it is usually interpreted. This effect of a on the interpretation of A in the 2PL case can be seen
more clearly if we compare what A would be for different values of a for the same value of bR bF. For
example, if a were set equal to 1.3, a value of bR bF of about 0.29 yields a A of 1.5, whereas if a were set
equal to 0.5, the same bR bF of 0.29 results in a A of only 0.58 in the 2PL case. Even though A = 1.5 (when a =
1.3) is interpreted as an indication of a larger difference in difficulty than A = 0.58 (when a = 0.5), the difficulty
differences are in actuality exactly the same (bR bF = 0.29). As interesting as these 2PL results are, they are,

-for the most part, merely didactic because item responses on the Law School Admission Test (LSAT) and other
nationally administered standardized tests often follow the 3PL model due to the extensive use of multiple-
choice items on these tests. Therefore, we now turn our attention to the results for the 3PL model.

Panels B, C, and D of Figure 2 show that the introduction of positive values of c into the IRF model has quite
a large effect on A. Clearly, the 2PL formula, A = 4a(bRbF), is not a very good general approximation to A in
the case of 3PL uniform DIF. Except for the very lowest values of bR, A is moderately to substantially reduced
from its 2PL value as bR increases, especially when the item favors the reference group (i.e., negative bR bF

values, and hence A values, indicating the item is more difficult for the focal group). Even for bR values as small
as 0, which is usually close to the mean of all the b values, the 3PL value of A is on average less than half the
corresponding 2PL value when averaged over the 15 bR bF values for DIF against the focal group for the case
of c = 0.2 (approximately the average c value on the LSAT). Even when such items display substantial amounts
of DIF against the focal group (bR bF = 1.0 to 1.5), A seldom reaches the level of a "B" item value, much
less a "C" item.

The panels in Figure 3 show how varying a affects A at the various values of bR and bF in the 3PL case
(c = 0.2). For all items Ratio = 5 and focal group mean = 1.0. The primary pattern of A decreasing when bR
increases, which was evident in Figure 2 is maintained across varying values of a, as shown in Figure 3.
Additionally, varying a does have a large effect on A, as expected from the 2PL results discussed above. As was
seen in Figure 2, the 3PL A values for the lowest values of bR followed the 2PL values [A = 4a(bR ]

more closely than for the higher values of bR for all levels of a. However, as a increases, the distortion in A
becomes more dramatic as bR increases. Thus, the effect of varying a on A for low values of bR, was similar to
that in the 2PL caseas a increases so does A. However, for higher values of bR, the effect of varying
a was quite unexpectedly the opposite of what would be predicted by the 2PL formulaas a increased,
A decreased, with the effect occurring most strongly for the case of DIF against the focal group. For example,
when bR = 1 and bF = 2, at a = 0.5, 0.7, 0.9, 1.1, and 1.3, the respective A values are 0.957, 0.783, 0.603,
0.466, and 0.369.
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of c = .2, Ratio = 5, and focal group mean = -1.0.

3.5

The panels in Figure 4 show how varying the focal group mean affects A at the various values of bR and bF
in the 3PL case (c = 0.2) for Ratio = 5 and a = 0.9. In all cases, the focal group 0's were specified as following a
normal distribution with unit standard deviation; the mean of the distribution used the values -1 (shown in Panel
C of Figure 2), -.5, 0, .5, and 1 (shown in Panels A through D of Figure 4). Recall that the reference group's 0's
were always specified as following a standard normal distribution. As in Figures 2 and 3, the most dramatic
effect is that A decreases as bR increases. Figure 4 shows that varying the focal group mean has a noticeable
effect on A, a result that the 2PL formula for A could not predict. The results show that the focal groups for
which A is most reduced relative to its 2PL value are the groups with the lowest proficiency distributions (focal
means of-1.0, -0.5, and 0.0; the focal group mean of-1.0 is shown in Panel C of Figure 2). Even though the
results are better (i.e., A is distorted less compared to the 2PL formula) for the focal groups with means greater
than 0, the shrinkage effect remains quite strong when bR ?: 1.0 (for the focal mean of 0.5) or when bR 1.5

(for the focal mean of 1.0). Moreover, the results for Figure 4 are only for a = 0.9, and Figure 3 showed that
higher a values cause even larger distortions in A. The focal groups used in DIF analyses at LSAC typically
have estimated means that are lower than the reference group's mean; thus we clearly deal primarily with the
larger distortions in A that result when the focal group's mean is less than the reference group's mean.
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FIGURE 4. Variation of A with bR (b value of reference group, indicated by the symbol), bF (b value of
focal group, indicated along the horizontal axis), and the mean of the focal group (which varies across panels)
for fixed values of c = .2, a = .9, and Ratio = 5.

The panels in Figure 5 show how varying the ratio of reference- to focal-group size affects A at the various
values of bR and bF in the 3PL case (c = 0.2) for focal group mean = -1 and a = 0.9. Again, the most dramatic
effect is that A decreases as bR increases. As indicated in Figure 5, varying the ratio of reference group size to
focal group size has a relatively minor effect on A.
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group, indicated along the horizontal axis), and the ratio of the reference group size to the focal group size
(which varies across panels) for fixed values of c = .2, a = .9, and focalgroup mean = -1.0.

Correspondence to Simulated Data Results

Previous simulation studies by Allen and Donoghue (1996); Donoghue, Holland, and Thayer (1993); and
Uttaro and Millsap (1994) have shown an unexplained tendency of the MH DIF estimator to decrease with
difficulty level. The above results indicate that this tendency may be explained, at least in part, by the behavior
of the MH DIF parameter itself. As an example, Table 2 shows the mean A values (in bold) from Allen and
Donoghue (1996, their Table 4) alongside our MH DIF parameter values (the A's, also in bold) where a was
calculated from Equation 15. Various values of a and bR are shown. For all items, c = .2, bF = bR +.4. As can be
seen in Table 2, our MH DIF parameter values, A, reproduce Allen and Donoghue's DIF estimator means
(labelled "Mean A " in the table) quite well. The amount that the parameter values differ from the estimated
values can probably be attributed to the known estimation bias of the MH DIF estimator that occurs when the
reference and focal group populations have a large difference in their proficiency means (as was the case for the
data simulated in Allen and Donoghue, 1996; this bias is evident in the "No DIF" column-all of the A means
would be within a standard error2 or two of 0 if there was no bias).

2 Standard error is estimated by dividing the tabulated standard deviation (SD) by the square root of 150, the number of replications.
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TABLE 2

Comparison of MH DIF estimates from Allen and Donoghue (1996) with our MH DIF parameter, A

a bR
No DIF (bF = bR)

Mean A SD of A Mean A

DIF (bF = bR +.4)

SD of A A

.5 -2 -.02 .22 -.73 .23 -.73

.5 -1 .00 .20 -.66 .19 -.67

.5 0 .04 .18 -.52 .19 -.58

.5 1 .06 .17 -.36 .18 -.44

.5 2 .08 .20 -.18 .20 -.29
1.0 -2 -.28 .33 -1.71 .28 -1.49
1.0 -1 -.17 .24 -1.42 .20 -1.30
1.0 0 -.02 .19 -.96 .18 -.95
1.0 1 .07 .19 -.43 .22 -.48
1.0 2 .14 .19 -.00 .22 -.15
1.5 -2 -.54 .46 -2.63 .38 -2.21
1.5 -1 -.28 .23 -2.07 .22 -1.85
1.5 0 -.04 .21 -1.17 .21 -1.17
1.5 1 .09 .21 -.31 .22 -.40
1.5 2 .14 .24 .05 .23 -.06

Note. In the calculation of mean and standard deviation of A , Allen and Donoghue (1996) used 150 replications. The "No DIF"
estimates from Allen and Donoghue indicate the amount of bias present in A caused by the large difference in mean proficiency
between the reference and focal groups. In all cases, c = .2. The reference group's 0's were sampled from a normal distribution with a
mean of 0 and standard deviation of .7. The focal group's 0's were sampled from a normal distribution with a mean of -.7 and standard
deviation of .8. The ratio of reference group size (5,100) to focal group size (1,050) was 4.857. These same 0 distributions and ratio were
specified for the calculation of A, given by A = -2.351n(a), where a is given in Equation 15.

Discussion

Before items are ever presented to examinees on an LSAT form, the items undergo an extensive sensitivity
review process. Despite these precautions, some items may function differently in various subgroups (i.e.,
exhibit DIF). DIF statistics are designed to detect such items. Several DIF statistics have been developed, but
the MH DIF procedure, which is used at LSAC, has become the most widely used methodology and is
recognized as the testing industry standard. Although the behavior of the MH DIF estimator's population
parameter is known in 1PL and 2PL data, it has not been known in 3PL data because the formulation of the MH
population parameter, A, has been an unsolved problem in the 3PL case. This lack of knowledge about A for
3PL items has limited the evaluation of the statistical bias in A and has also hindered the understanding of the
observed effects of simulation study factors on A . In particular, several researchers have found that the
difficulty level of a 3PL DIF item can have a sizable effect on the magnitude of A (Allen & Donoghue, 1996;
Donoghue, Holland, & Thayer, 1993; Uttaro & Millsap, 1994), but none of these studies could adequately
explain the cause of this effect.

The present statistical report formulated a population DIF parameter for the MH DIF estimator for any IRF
model, including the 3PL model, and investigated its behavior with respect to a number of examinee and item
factors through a systematic set of calculations. The findings presented here indicate that caution should be used
in applying the MH DIF estimator to item response data that follow the 3PL model. In particular, the results
indicate that the MH DIF estimator may exhibit reduced statistical power to detect DIF in 3PL items of medium
or high difficulty, even when DIF is substantial (i.e., large difference in b's), especially when the focal group
has a low mean proficiency. Additionally, it was shown that the behavior of the MH DIF population parameter
can account for the unexplained behavior of A with respect to difficulty level observed in a past simulation
study (Allen & Donoghue, 1996). The fact that A is smaller (in absolute value) than expected for 3PL items of
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medium or high difficulty, as compared with 1PL or 2PL items, now can be explained because the value of the
MH DIF parameter, A, also exhibits this pattern. Thus 0 should be used with caution until the apparent
deficiencies of this procedure are better understood or corrected.

The implications of this study on the routine operational task of identifying DIF at LSAC are still unknown
because real data do not mimic simulated data exactly. However, because some items on the LSAT are known
to exhibit guessing behavior, the results certainly suggest that additional research is warranted.
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